THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Классификацию предложил И. А. Тиме: стружка сливная (а), скалывания или суставчатая (б), элементная (в), и надлома (г).

Рисунок 3.3 – Типы стружек

Стружка скалывания состоит из отдельных элементов. Поверхность стружки, контактирующая с передней поверхностью резца гладкая. Она образуется в результате обработки сталей и других пластичных материалов при большой толщине срезаемого слоя, относительно низкой скорости и небольшом переднем угле лезвия.

При уменьшении толщины среза, повышении скорости резания и увеличении переднего угла отдельные элементы стружки станут менее отчетливыми и будут сходить без зазубрин на ее внешней стороне (сливная стружка).

Если увеличить толщину среза, уменьшить скорость резания и передний угол g, отдельные элементы стружки будут менее связанными, то есть образуется элементная стружка. Эти три вида стружки получаются при обработке пластичных материалов.

В случае обработки хрупких материалов при большой толщине среза и больших углах g происходит вырывание или откалывание хрупких частиц металла неправильной формы.

Получаемая при этом стружка называется стружкой надлома. Она образуется при обработке чугуна, который плохо сопротивляется растяжению.

При больших углах g в срезаемом слое появляются напряжения отрыва, которые способствуют выламыванию кусков металла. Если увеличить скорость резания, при обработке чугуна образуется элементная стружка, а при очень высоких скоростях чугун дает сливную стружку, хотя по сравнению со стальной стружкой прочность ее низка.

Классификация И.А. Тиме не потеряла своего значения и в наше время, хотя и подверглась значительной конкретизации. Например: при обработке стали известно свыше 30 разновидностей стружки.

3.3 Механизмы образования стружки при свободном прямоугольном резании

Свободная поверхность стружки всегда неровная, обычно на ней заметны мелкие волны или зазубрины. Даже на прочной сливной стружке часто можно наблюдать трещины, разрывы. Поскольку полное описание механизма образования стружки сложно для анализа напряжений и деформаций при резании, реальный процесс стружкообразования заменяют его упрощенной моделью.

Не принимается во внимание искажение формы полученных листов реальной стружки и увеличение ее ширины; ее поперечное сечение представляют в виде прямоугольника с высотой, равной средней толщине стружки и шириной, равной первоначальной ширине резания.

Режущий клин действует на срезаемый слой толщиной а на контактной площадке шириной с. Сила R 1 , с которой инструмент передней поверхностью давит на срезаемый слой получила название силы стружкообразования. Линия ОК разграничивает области сжимающих (слева от ОК) и растягивающих (справа от ОК) напряжений в обрабатываемом материале ниже поверхности резания.

Рисунок 3.4 – Зоны первичной и вторичной деформации при превращении срезаемого слоя в сливную стружку

Зона ОАВ N О , расположенная перед передней поверхностью инструмента является зоной первичной деформации. Она имеет форму клина с вершиной, совпадающей с вершиной инструмента. Нижняя граница ОА зоны 1 вогнута и пересекает продолжение поверхности резания. По длине она в 2 - 4 раза больше выпуклой верхней границы ОВ зоны I. Обрабатываемая поверхность плавно сопрягается со свободной стороной стружки по линии АВ . Правее линии ОВ находятся зерна стружки, а левее линии ОА – недеформированные зерна материала срезаемого слоя. Зерно материала срезаемого слоя, перемещаясь относительно инструмента со скоростью v , проходит по траектории своего движения (кривая FQ ) и сильно деформируется. Деформация зерна заканчивается в точке Q , и оно приобретает скорость v с ,равную скорости стружки.

Линией ОА показана поверхность сдвига (скольжение), на которой сдвигающие напряжения  равны пределу текучести  с материала на сдвиг, то есть  =  с. Вся зона ОАВ N О делится на подобные поверхности, на каждой из которых сдвигающие напряжения равны пределу текучести материала, уже получившего упрочнение в результате предшествующей деформации.

Последняя деформация сдвига обозначается на рисунке линией ОВ . На ней сдвигающие напряжения  равны пределу текучести  с  на сдвиг материала, окончательно упрочненного в результате превращения срезаемого слоя в стружку.

Деформирование срезаемого материала при этом было бы законченным, если бы отсутствовало трение между контактной поверхностью стружки и поверхностью инструмента. Поскольку трение между указанными поверхностями имеется всегда, зерна стружки, находящиеся в непосредственной близости от контактной поверхности стружки, продолжают деформироваться и после выхода их из зоны первичной деформации. Так возникает зона II вторичной деформации стружки, ограниченная передней поверхностью инструмента и линией О N Д . Ширина ОД этой зоны приблизительно равна половине ширины площадки контакта С, а максимальная ее толщина D 1 составляет примерно 0,1а с .

Степень деформации зерен во II зоне может в 20 и более раз превышать среднюю деформацию стружки.

Размеры зоны вторичной деформации и степень деформации зерен в этой зоне определяются силами трения на контактных поверхностях стружки и инструмента. Чем меньше силы трения, тем меньше размеры зоны II и деформация в ней зерен. При уменьшении a , увеличении g и применении СОЖ с сильно выраженными смазочными свойствами зона II практически исчезает.

При g , a , v , используемых в производственных условиях, протяженность FQ первичной деформации резко сокращается, а ее границы ОА и ОВ сдвигаются, приближаясь к линии ОЕ , наклонной к плоскости резания под углом b . Это позволяет считать, что сдвиговые деформации локализуются в тонком слое толщиной D x , а семейство плоскостей скольжения можно заменить единственной плоскостью ОЕ , называемой условно плоскостью сдвига. При этом процесс превращения срезаемого слоя в стружку можно представить как процесс последовательных сдвигов тонких слоев обрабатываемого материала вдоль условной плоскости сдвига.

При резании материалов средней пластичности на средних скоростях резания образуются стружки скалывания, при резании мягких пластичных материалов или тех же, но на больших скоростях резания образуются сливные стружки.

Процесс образования стружек скалывания происходит в описанной ниже последовательности (рисунок.).

Под действием силы Р резец внедряется в обрабатываемый материал и производит смятие его в каком-то объеме. По мере перемещения резца длина площадки смятия l см увеличивается и на обрабатываемый материал, на его

элементарный объем - элемент будущей стружки, действует все большая возрастающая сила. Увеличение этой силы идет до тех пор, пока не произойдет скалывание элемента по плоскости 1-1 под углом b 1 . Эта плоскость называется плоскостью скалывания, а угол b 1 - углом скалывания. Со стороны резца на элемент стружки действует сила Р см :

s см - предел прочности обрабатываемого материала на смятие,

b - ширина среза,

l см - длина площадки смятия.

Элемент удерживается силой Р:

где t ск - предел прочности обрабатываемого материала на сдвиг(скалывание),

а – толщина среза.

Для скалывания элемента необходимо, чтобы:

,

Отсюда видно, что размеры скалываемых элементов зависят от физико-механических свойств обрабатываемого материала, толщины среза, величины переднего угла и угла скалывания, величина которого сильно зависит от свойств внешней среды, в которой осуществляется резание.

Периодический характер образования стружки вызывает колебания силы резания, что делает процесс резания динамически неустойчивым.

Признаком стружек скалывания является наличие различимых на глаз крупных элементов. Скалывание элементов не приводит к разрушению металла, стружка представляет собой прочное тело из крепко соединенных друг с другом элементов.

Сливная стружка представляет собой сплошную ленту, в которой отдельные ее элементы не вооруженным глазом трудно различимы и не просматриваются. В отличие от процесса образования стружек скалывания, в сливных стружках деформация смятия происходит одновременно со сдвигом элементов. Как только произойдет его сдвиг, на плоскости сдвига металл упрочнится и элемент остановится, прекратит свое движение по плоскости скалывания. При остановке он снова сминается движущимся инструментом, площадка смятия у основания элемента увеличивается, сила Р см становится больше Р ск и элемент вновь сдвигается. И так происходит в течение всего времени образования стружки.

Процесс образования стружки здесь не заканчивается в зоне сдвига. При образовании сливных стружек процесс формирования их продолжается в течение всего времени движения по передней поверхности режущего инструмента.

При резании хрупких металлов образуются стружки надлома. Резец, внедряясь в металл, не сдвигает его, а сжимает и вырывает сжатый надломленный элемент. Разрушение идет по поверхности, произвольно охватывающей напряженную зону, поэтому обработанная поверхность получается неровной.

Процесс резания (стружкообразования) является сложным физическим процессом, сопровождающимся большим тепловыделением, деформацией металла, износом режущего инструмента и наростообразованием на резце. Знание закономерностей процесса резания и сопровождающих его явлений позволяет рационально управлять этим процессом и изготовлять детали более качественно, производительно и экономично. При резании различных материалов образуются следующие основные типы стружек (смотри рисунок): сливные (непрерывные), скалывания (элементные) и надлома.

Сливная стружка - а) образуется при резании пластических металлов (например, мягкой стали, латуни) с высокими скоростями резания и малыми подачами при температуре 400-500°С. Образованию сливной стружки способствуют уменьшение угла резания (при оптимальном значении переднего угла) и высокое качество смазочно-охлаждающей жидкости.

Стружка скалывания - б) состоит из отдельных элементов, связанных друг с другом и имеет пилообразную поверхность. Такая стружка образуется при обработке твердой стали и некоторых видов латуни с малыми скоростями резания и большими подачами. С изменением условий резания стружка скалывания может перейти в сливную и наоборот.

Стружка надлома - в) образуется при резании малопластичных материалов (чугуна, бронзы) и состоит из отдельных кусочков.

Режущий инструмент деформирует не только срезаемый слой, но и поверхностный слой обрабатываемой детали. Деформация поверхностного слоя металла зависит от различных факторов и ее глубина составляет от сотых долей миллиметра до нескольких миллиметров. Под действием деформации поверхностный слой металла упрочняется, увеличивается его твердость и уменьшается пластичность, т. е. происходит так называемый наклеп обрабатываемой поверхности. Чем мягче и пластичнее обрабатываемый металл, тем интенсивней процесс образования наклепа. Чугуны обладают значительно меньшей способностью к упрочнению, чем стали. Глубина и степень упрочнения при наклепе увеличиваются с увеличением подачи и глубины резания и уменьшаются с увеличением скорости резания. При работе плохо заточенным инструментом глубина наклепа примерно в 2-3 раза больше, чем при работе остро заточенным инструментом. Применение смазочно-охлаждающей жидкости значительно уменьшает глубину и степень упрочнения поверхностного слоя.

При обработке металлов, особенно пластичных, в непосредственной близости к режущей кромке резца на переднюю поверхность резца налипает обрабатываемый материал, образуя металлический нарост, имеющий клиновидную форму и по твердости в 2-3 раза превышающий твердость обрабатываемого материала. Являясь как бы продолжением резца, нарост (рисунок слева) изменяет геометрические параметры резца (δ1<δ), участвует в резании металла и оказывает влияние на результаты обработки, износ резца и силы, действующие на резец. При обработке нарост периодически скалывается и вновь образуется; отрыв частиц нароста по длине режущего лезвия происходит неравномерно, что приводит к мгновенному изменению глубины резания. Эти явления, повторяющиеся периодически, увеличивают шероховатость обработанной поверхности. С увеличением пластичности обрабатываемого металла размеры нароста возрастают. При обработке хрупких металлов, например чугуна, нарост, как правило, не образуется.

При скорости резания υ<5м/мин нарост не образуется. Наибольшая величина нароста соответствует υ=10-20 м/мин для инструмента из быстрорежущей стали и υ>90м/мин для твердосплавного инструмента. Поэтому при этих скоростях не рекомендуется производить чистовую обработку. С увеличением подачи нарост увеличивается, поэтому при чистовой обработке рекомендуется подача 0,1-0,2 мм/об. Глубина резания существенного влияния на размеры нароста не оказывает. Для уменьшения нароста рекомендуется уменьшать шероховатость передней поверхности режущего инструмента, по возможности увеличивать передний угол γ (например, при γ=45° нарост почти не образуется) и применять смазочно-охлаждающие жидкости. При черновой обработке образование нароста, напротив, благоприятно сказывается на процессе резания.

Парфеньева И.Е. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ. М.: Учебное пособие, 2009

1. Общая характеристика обработки резанием

Общая характеристика обработки резанием. Сущность процесса резания. Виды стружек. Силы резания. Тепловые явления процесса резания. Наростообразование при резании. Вибрации при резании.

1.1. Общие сведения

Обработка металлов резанием – это процесс срезания режущим инструментом с поверхности заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей детали.

Заготовками для деталей служат отливки, поковки и штамповки, сортовой прокат. Используются как черные так и цветные металлы.

Слой металла, удаляемый с заготовки при резании, называется припуском .

В зависимости от применяемого инструмента различают следующие виды обработки материалов резанием:

1. Лезвийная обработка (резцы, фрезы, сверла и др.)

2. Абразивная обработка (круги, бруски, пасты и др.)

3. В физико-химических средах (электролиты, плазма, луч лазера и др.).

1.2.Сущность процесса резания

Резание металлов – сложный процесс взаимодействия режущего инструмента и заготовки, сопровождающийся определенными физическими явлениями. Упрощенно процесс резания можно представить в виде следующей схемы (рис.1.). В начальный момент процесса резания движущийся резец под действием силы Р вдавливается в металл, в срезаемом слое возникают упругие деформации. При дальнейшем движении резца упругие деформации, накапливаясь по абсолютной величине, переходят в пластические. В прирезцовом срезаемом слое материала заготовки возникает сложное упругонапряженное состояние. В плоскости, перпендикулярной траектории движения резца, возникают нормальные напряжения , а в плоскости, совпадающей с траекторией движения резца, - касательные напряжения . Наибольшие касательные напряжения действуют у вершины резца А , уменьшаясь до нуля по мере удаления от нее. Нормальные напряжения вначале действуют как растягивающие, а затем быстро уменьшаются и, переходя через нулевое значение, превращаются в напряжения сжатия.

Под действием нормальных и касательных напряжений срезаемый слой пластически деформируется. Рост пластической деформации приводит к сдвиговым деформациям, т.е. к смещению частей кристаллов относительно друг друга. Это происходит, когда возникающие напряжения превосходят предел прочности обрабатываемого материала. Сдвиговые деформации происходят в зоне стружкообразования АВС , причем они начинаются в плоскости АВ и заканчиваются в плоскости АС – скалыванием элементарного объема металла и образованием стружки. Далее процесс повторяется и образуется следующий элемент стружки и т.д.

Условно принято считать, что сдвиговые деформации происходят по плоскости ОО , которую называют плоскостью сдвига. Плоскость сдвига ОО располагается примерно под углом = 30? к направлению движения резца. Угол называют углом сдвига. Он не зависит от геометрических параметров режущего инструмента и свойств обрабатываемого материала.

Срезанный и превращенный в стружку слой металла дополнительно деформируется вследствие трения стружки о переднюю поверхность инструмента.

Рис.1. Схема упругонапряженного состояния металла при обработке резанием

Структура металла зоны АВС и стружки резко отличаются от структуры основного металла. Структура основного металла состоит из равноосных зерен. В зоне АВС зерна сильно измельчены и вытянуты в определенном направлении, совпадающем с направлением плоскости О1 О1 , которая с плоскостью сдвига составляет угол . Для хрупких материалов пластическая деформация практически отсутствует и угол близок к нулю, а при резании деталей из пластичных материалов значение угла доходит до 30 град. У передней поверхности резца слои стружки искривляются и располагаются почти параллельно ей.

Следовательно, резание может быть представлено как процесс последовательного упругого и пластического деформирования срезаемого слоя металла, а затем его разрушения.

1.3. Виды стружек

В зависимости от обрабатываемого материала, условий резания, геометрии режущего инструмента изменяется характер стружки. Стружка при резании может быть (рис.2):

сливная – сходит в виде ленты, закручивающейся в спираль. Поверхность ее, обращенная к резцу, чистая и гладкая. С обратной стороны она имеет небольшие зазубрины. Образуется при обработке пластичных материалов (мягкой стали, латуни, алюминия и др.) со значительными скоростями скольжения и небольшими подачами инструмента с оптимальными передними углами. Образованию сливной стружки способствует увеличение переднего угла , уменьшение толщины среза a , повышение скорости резания, а также увеличение пластичности обрабатываемого материала;

скалывания – состоит из отдельных связанных между собой элементов. Обращенная к резцу сторона ее гладкая, а противоположная имеет большие зазубрины. Образуется при обработке металлов средней твердости с невысокими скоростями резания и значительными подачами резцов, имеющих небольшие передние углы;

надлома – состоит из отдельных не связанных или слабо связанных между собой элементов стружки. Образуется при обработке хрупких материалов (чугуна, бронзы, некоторых сплавов алюминия). Обработанная поверхность имеет большие неровности.

Рис.2. Виды стружек:

a - сливная; б - скалывания; в - надлома

Стружка, образующаяся в процессе резания, подвергается значительной деформации, одним из проявлений которой является ее усадка .

Усадка состоит в том, что длина стружки становится меньше длины обработанной поверхности, а толщина – больше толщины срезанного с заготовки слоя металла. Ширина стружки при этом практически не изменяется. Величина усадки характеризуется коэффициентом усадки:

где Lo – длина обработанной поверхности; L – длина стружки; ho –толщина срезаемого с заготовки слоя; h – толщина стружки.

Величина усадки стружки зависит от свойств обрабатываемого материала, режима резания, геометрических параметров инструмента и др. Для хрупких материалов , для пластичных . Использование СОЖ усадку стружки меньшает.

1.4. Силы резания

При обработке резанием металл оказывает сопротивление режущему инструменту. Это сопротивление преодолевается силой резания, приложенной к передней поверхности инструмента. Сила резания направлена перпендикулярна передней поверхности резца. Сила резания затрачивается на отрыв элемента стружки от основной массы металла и его деформацию, а также на преодоление трения стружки о переднюю поверхность резца и задней поверхности резца о поверхность резания.

В результате сопротивления металла процессу деформирования возникают реактивные силы, действующие на режущий инструмент (рис.3а).

Рис.3. Схема сил, действующих на резец (а ), и разложение силы резания на составляющие (б )

Это силы упругого (Ру1 и Ру2 ) и пластического (Рп1 и Рп2 ) деформирования, векторы которых направлены перпендикулярно к передней и главной задней поверхностям инструмента. Наличие нормальных сил обуславливает возникновение сил трения Т1 и Т2 , направленных по передней и главной задней поверхностям инструмента. Всю указанную систему сил приводят к равнодействующей силе резания: .

Точка приложения силы R находится на рабочей части главной режущей кромки инструмента. Абсолютная величина, точка приложения и направление в пространстве силы R под влиянием ряда факторов (неоднородность структуры и твердости заготовки, непостоянство срезаемого слоя металла и др.) являются переменными. Поэтому для расчетов используют не равнодействующую силу резания R , а ее составляющие, действующие по трем взаимно перпендикулярным направлениям – Рх , Ру , Рz . Для токарной обработки

ось Х – линия центров станка; ось У – горизонтальная линия, перпендикулярная линии центров станка; ось Z – линия, перпендикулярная плоскости ХОУ (рис.3б).

Сила РZ –вертикальная составляющая силы резания или просто сила резания. Действует в плоскости резания в направлении главного движения. По силе Рz определяют крутящий момент на шпинделе станка, эффективную мощность резания, деформацию изгиба заготовки в плоскости ХОZ , изгибающий момент, действующий на стержень резца, а также ведут динамический расчет механизмов коробки скоростей станка.

Сила РУ радиальная составляющая силы резания. Действует перпендикулярно оси обрабатываемой заготовки в плоскости ХОУ. По силе Ру определяют величину упругого отжатия резца от заготовки, ведут расчет технологической системы на жесткость. Сила Ру стремится оттолкнуть резец от заготовки и деформировать ее. Учитывается при расчете прочности станины и суппорта, способствует появлению вибраций.

Сила РХ – осевая составляющая силы резания. Действует вдоль оси заготовки параллельно направлению продольной подачи. По силе Рz рассчитывают механизм подачи станка, а также изгибающий момент, действующий на стержень резца.

Равнодействующая силы резания определяется как диагональ параллепипеда, построенного на составляющих сил:

Каждая из составляющих силы резания определяется по эмпирическим формулам вида: , Н

где – коэффициент, учитывающий физико-механические свойства материала обрабатываемой заготовки;

– коэффициент, учитывающий факторы, не вошедшие в формулу (величины углов резца, материал резца и др.)

– глубина резания, мм;

S – подача, мм/об;

V – скорость резания, м/мин;

Показатели степеней.

Величины коэффициентов и показателей степеней выбираются из справочников для конкретных условий обработки. Аналогичные формулы существуют и для определения сил Ру и Рz .

Между указанными силами имеется примерно следующее соотношение:

Крутящий момент на шпинделе станка: , н·м,

где D заг –диаметр заготовки, мм

Эффективной мощностью N е называют мощность, расходуемую на процесс деформирования и срезания с заготовки слоя металла. При точении цилиндрическойповерхности на токарно-винторезном станке эффективная мощность

, кВт

где n –частота вращения заготовки, об/мин.

Величина мощности от силы составляет 1-2% от всей мощности. Поэтому ею пренебрегают и мощность N е определяют по формуле:

Мощность, расходуемая электродвигателем ,

где - к.п.д. станка, равный 0,7 – 0,8.

1.5. Тепловые явления процесса резания

При резании вся механическая работа превращается в тепловую энергию. Количество теплоты Q , выделяющееся при резании в единицу времени (тепловая мощность), определяется по формуле: , Дж,

где РZ - сила резания, V - скорость резания.

Образующееся в зоне резания тепло распределяется между заготовкой, стружкой, режущим инструментом и окружающей средой.

Причинами образования теплоты являются упругопластическое деформирование в зоне стружкообразования, трение стружки о переднюю поверхность инструмента, трение задних поверхностей инструмента о заготовку. Тепловой баланс процесса резания можно представить следующим тождеством:

где: Q Д – количество теплоты, выделяющейся при упругопластическом деформировании обрабатываемого материала;

Q П.П – количество теплоты, выделяющейся при трении стружки о переднюю поверхность инструмента;

Q З.П . – количество теплоты, выделяющейся при трении задних поверхностей инструмента о заготовку;

Q С – количество теплоты, отводимое стружкой;

Q И – количество теплоты, отводимое режущим инструментом;

Q Л – количество теплоты, переходящее в окружающую среду (теплота лучеиспускания).

По данным многих исследований, количество теплоты, отводимое стружкой, составляет (25-85)% всей выделяющейся теплоты, заготовкой (10-50)%, режущим инструментом (2-8)%. Количественное распределение теплоты зависит главным образом от скорости резания (рис.4). С увеличением скорости резания отводимое стружкой тепло увеличивается, а заготовкой, инструментом, окружающей средой – уменьшается.

Рис.4. Распределение теплоты резания в зависимости от скорости резания

Соотношение членов в уравнении теплового баланса не постоянны и изменяются в зависимости от физико-механических свойств обрабатываемого материала, условий резания и материала инструмента, условий обработки и др.

Увеличение подачи S повышает температуру в зоне резания, но менее интенсивно, чем при увеличении скорости резания V . Еще меньшее влияние на температуру оказывает глубина резания t .

Влияние геометрии резца:

1.С увеличением угла резания и угла в плане температура в зоне резания возрастает.

2.С увеличением радиуса закругления при вершине температура в зоне резания уменьшается.

Теплообразование отрицательно влияет на процесс обработки. Обработка должна производится без перегрева режущего инструмента. Так для работы инструмента из углеродистой стали температура в зоне резания не должна превышать (200-250)град C, из быстрорежущей стали (550-600) град C, инструментом, оснащенным твердыми сплавами – (800-1000) град C, а минералокерамикой – (1000-1200) град C; абразивными материалами – (1800-2000) град C. Нагрев инструмента выше указанных температур вызывает структурные превращения в материале, из которого инструмент изготовлен, снижение его твердости и потерю его режущих способностей. Также происходит изменение геометрических размеров инструмента, что влияет на точность размеров и геометрическую форму обработанных поверхностей. Нагрев заготовки вызывает изменение ее геометрических размеров. Вследствие жесткого закрепления заготовки на станке она начинает деформироваться. А это приведет к снижению точности обработки.

Для уменьшения отрицательного влияния теплоты на процесс резания обработку следует вести в условиях применения смазочно-охлаждающих сред (СОЖ).

1.6. Наростообразование при резании

При резании пластичных материалов (сталь, латунь) происходит явление, получившее название наростообразования, когда на передней поверхности резца у режущей кромки образуется плотное скопление частиц металла, прочно укрепляющееся на передней поверхности инструмента. Образование нароста объясняется тем, что при некоторых условиях обработки (высокие давления, значительные температуры в зоне контакта стружки с резцом) силы трения между передней поверхностью инструмента и срезанным слоем металла становятся больше сил внутреннего сцепления, и при определенных температурных условиях металл прочно оседает на передней поверхности инструмента. Размеры и форма нароста постоянно меняются. Он периодически разрушается, уносится стружкой и образуется вновь.

Рис.5. Схема образования нароста

Металл нароста деформирован, и твердость его значительно (иногда в 2-3 раза) превосходит твердость обрабатываемого металла.

Угол резания на наросте меньше угла резания на резце , вследствие этого несколько уменьшаются затраты мощности на резание. Нарост защищает вершину резца и режущую кромку от преждевременного изнашивания. Точность и качество обработки поверхностей при наросте ухудшаются. Возрастает шероховатость поверхностей. Поэтому при черновой обработке, где качество поверхности не имеет особого значения, нарост благоприятно влияет на резание, а при чистовой обработке, когда качество обработанной поверхности важно, образование нароста вредно и его следует избегать.

Установлено, что интенсивность образования нароста в значительной степени зависит от скорости резания. Наибольшее наростообразование имеет место при скоростях резания 18-30 м/мин, а при скоростях резания до 10-12 м/мин и более 50-70 м/мин нарост на режущем инструменте практически не образуется. Поэтому чистовую обработку выполняют на повышенных скоростях резания.

С увеличением подачи S размеры нароста увеличиваются. Поэтому при чистовой токарной обработке рекомендуются подачи 0,1 - 0,2 мм/об.

Глубина резания t существенного влияния на размеры нароста не оказывает.

С увеличением угла резания нарост увеличивается. Применение СОЖ уменьшает нарост.

При прерывистом резании (строгание, фрезерование) нарост обычно не удерживается на режущей кромке.

1.7. Вибрации при резании

Вследствие нежесткости элементов технологической системы СПИД (станок–приспособление–инструмент–деталь) всегда возникают колебания инструмента относительно заготовки, которые называют вибрациями при резании.

Вибрации отрицательно влияют на процесс резания:

  • снижают качество обработанной поверхности
  • усиливается динамический характер силы резания, а нагрузки на движущиеся детали и сборочные единицы станка усиливаются в десятки раз – особенно в условиях резонанса, когда частота собственных колебаний системы СПИД совпадает с частотой колебаний при обработке резанием
  • резко снижается стойкость инструмента, особенно с пластинками из твердых сплавов
  • возникает шум, утомляюще действующий на окружающих людей, и производительность труда снижается.

Основные меры борьбы с вибрациями:

  • повышение жесткости технологической системы
  • уменьшение массы колебательных систем
  • применение виброгасителей (динамических, гидравлических, упругих)
  • подбор оптимальных режимов резания и геометрии режущего инструмента.

Однако при обработке труднообрабатываемых материалов вибрации играют положительную роль. Для обработки таких материалов применяют вибрационное резание. Сущность вибрационного резания состоит в том, что в процессе обработки создаются искусственные колебания инструмента с регулируемой частотой и заданной амплитудой в определенном направлении. Источники колебаний – механические вибраторы или высокочастотные генераторы. Частоту колебаний задают от 200 до 20000 Гц, амплитуду колебаний – от 0,02 до 0,002 мм. Колебания задают по направлению подачи или по направлению скорости резания.

Fireline

В зависимости от условий обработ­ки стружка может быть разных видов. При обработке пластичных материа­лов (конструкционные стали) образу­ется элементная стружка (рис. 5), ступенчатая и сливная, а при обра­ботке малопластичных материалов- стружка надлома. Эта классификация стружек предложена в 1870 г. Н. А. Тиме. Ею пользуются и в настоящее вре­мя.

Элементная стружка (рис. 5, а) состоит из отдельных, пластически деформированных элементов, сла­бо связанных или совсем не связан­ных между собой. На рис. 6 и 7 пока­заны схемы образования элементной стружки. Резец, установленный на глубину а, перемещается под действи­ем силы Р, передаваемой суппортом станка, и постепенно вдавливается в

Рис. 5. Виды стружек, образующихся при резании

Рис. 6. Схема образования стружки (по И. А. Тиме)

металл заготовки, сжимает его своей передней поверхностью я вызывает сначала упругие, а затем пластические деформации. Различают следующие фазы образования элемента (по И. А. Тиме). В начале резания (рис. 6, а) происходит соприкосновение рез­ца с обрабатываемой заготовкой. За­тем резец своей вершиной вдавлива­ется в металл (рис. 6,6), который претерпевает деформацию сдвига. По мере углубления резца в срезаемом слое растут напряжения и, когда они достигнут величины предела прочно­сти обрабатываемого металла, про

Рис. 7. Схема образования стружки: - плоскостьскалывания

изойдет сдвиг (скалывание) первого элемента (1) по плоскости сдвига АВ, составляющей с направленным перемещением резца угол , равный 30-40 °. Угол называется углом сдвига. Внутри каждого элемента про­исходят межкристаллические сдвигипод углами =60-65° (рис. 7).

После скалывания первого элемен­та стружки резец сжимает следующий близлежащий слой металла, в резуль­тате чего образуется второй элемент (2), отделяющийся от заготовки по плоскости наибольших касательных напряжений под тем же углом и т. д. (рис. 6, в,г).

Цифрами 1, 2, 3,...,10 обозначены последовательно образуемые элемен­ты стружки.

Ступенчатая стружка (см. рис. 5, б) получается при обработке сталей со средней скоростью резания. Ступенчатая стружка имеет одну сто­рону (со стороны резца) гладкую, а другая сторона имеет ступеньки (за­зубрины) с выраженным направлени­ем отдельных элементов, прочно меж­ду собой связанных. У ступенчатой стружки разделение ее на части не происходит.

Сливная стружка (см. рис. 5, в) сходит с резца в виде ленты без зазубрин, присущих ступенчатой струж­ке. Она получается при обработке ста­лей с высокой скоростью резания. Поверхность стружки, прилегающая к пе­редней поверхности резца, сравнитель­но гладкая, а при высоких скоростях отполирована. Ее противоположная сторона покрыта мелкими зазубринками - насечкой и имеет бархатистый вид.


Стружка надлома (см. рис. 5, г) получается при обработке мало­пластичных металлов (твердый чугун, твердая бронза). Стружка состоит из отдельных, не связанных между собой кусочков различной формы и разных размеров. Обработанная поверхность при такой стружке получается шерохо­ватой с впадинами и выступами.

Тип стружки во многом зависит от рода и механических свойств обраба­тываемого материала. При резании пластичных материалов возможно об­разование элементной, ступенчатой и сливной стружки. По мере увеличения твердости и прочности обрабатываемо­го материала сливная стружка перехо­дит в ступенчатую, а затем в элемент­ную. При обработке хрупких материа­лов образуется или элементная, или стружка надлома.

2. Виды стружек

Смотрите также:

Токарный станок и токарное дело . Столярные работы. - Приспособление для выделки тел вращения из дерева и других твердых материалов

Токарные станки с ЧПУ. Наладка и эксплуатация токарных станков...

Гидро- и пневмоприводы токарных станков. Автоматизация и механизация токарной обработки.

Автоматизация и механизация токарной обработки. 17.1. Общие сведения.

19.3. Конструктивные особенности токарных станков с ЧПУ.
Фрезерное дело . Основные сведения о фрезеровании.

Слесарное дело .
Наиболее многочисленную группу металлорежущих станков составляют токарные станки (45).

Токарный станок токарное дело . Точеные изделия находятся во множестве между египетскими древностями, а станки … Т. станки с маточным винтом...

Двухстоечные токарно -карусельные станки. 22.2 Подвесной пульт управления станка модели 1512.

Электрическая схема токарного станка. Рассмотренные выше элементы составляют электрооборудование станка, а взаимодействие их определяется
Фрезерное дело .

Слесарное дело .
Рассмотрим конструкцию широко применяемого при обработке металлов резанием инструмента - токарного резца.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама